On some symmetric multidimensional continued fraction algorithms
نویسندگان
چکیده
We compute explicitly the density of the invariant measure for the Reverse algorithm which is absolutely continuous with respect to Lebesgue measure, using a method proposed by Arnoux and Nogueira. We also apply the same method on the unsorted version of Brun algorithm and Cassaigne algorithm. We illustrate some experimentations on the domain of the natural extension of those algorithms. For some other algorithms, which are known to have a unique invariant measure absolutely continuous with respect to Lebesgue measure, the invariant domain found by this method seems to have a fractal boundary, and it is unclear that it is of positive measure.
منابع مشابه
Some aspects of multidimensional continued fraction algorithms
Many kinds of algorithms of continued fraction expansions of dimension s(≥ 2) have been studied starting with K.G.J.Jacobi(1804-1851), for example, see [14]. For s = 1, we know Lagrange’s theorem related to periodic continued fractions and real quadratic irrationals. But, even for real cubic irrationalities, there appeared no suitable algorithms (of dimension 2). In this section, we roughly exp...
متن کامل$3$-dimensional Continued Fraction Algorithms Cheat Sheets
Multidimensional Continued Fraction Algorithms are generalizations of the Euclid algorithm and find iteratively the gcd of two or more numbers. They are defined as linear applications on some subcone of R. We consider multidimensional continued fraction algorithms that acts symmetrically on the positive cone R+ for d = 3. We include well-known and old ones (Poincaré, Brun, Selmer, Fully Subtrac...
متن کاملConstructing multidimensional periodic continued fractions in the sense of Klein
We consider the geometric generalization of ordinary continued fraction to the multidimensional case introduced by F. Klein in 1895. A multidimensional periodic continued fraction is the union of sails with some special group acting freely on these sails. This group transposes the faces. In this article, we present a method of constructing “approximate” fundamental domains of algebraic multidim...
متن کاملS - adic expansions related to continued fractions
We consider S-adic expansions associated with continued fraction algorithms, where an S-adic expansion corresponds to an infinite composition of substitutions. Recall that a substitution is a morphism of the free monoid. We focus in particular on the substitutions associated with regular continued fractions (Sturmian substitutions), and with Arnoux–Rauzy, Brun, and Jacobi–Perron (multidimension...
متن کاملMultidimensional Euclidean algorithms, numeration and substitutions
The aim of this survey is to discuss multidimensional continued fraction and Euclidean algorithms from the viewpoint of numeration systems, substitutions, and the symbolic dynamical systems they generate. We will mainly focus on two types of multidimensional algorithms, namely, unimodular Markovian ones which include the most classical ones like e.g. Jacobi-Perron algorithm, and algorithms issu...
متن کامل